home *** CD-ROM | disk | FTP | other *** search
MacBinary | 1995-10-09 | 5.6 KB | [TEXT/CWIE] |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was processed as: MacBinary
(archive/macBinary).
You can browse this item here: DrawGrating.c
Confidence | Program | Detection | Match Type | Support
|
---|
66%
| dexvert
| Compact Compressed (Unix) (archive/compact)
| ext
| Supported |
10%
| dexvert
| MacBinary (archive/macBinary)
| fallback
| Supported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| MacBinary II, inited, Mon Oct 9 15:26:44 1995, modified Mon Oct 9 15:26:44 1995, creator 'CWIE', type ASCII, 5067 bytes "DrawGrating.c" , at 0x144b 410 bytes resource
| default (weak)
| |
99%
| file
| data
| default
| |
74%
| TrID
| Macintosh plain text (MacBinary)
| default
| |
25%
| TrID
| MacBinary 2
| default (weak)
| |
100%
| siegfried
| fmt/1762 MacBinary (II)
| default
| |
100%
| lsar
| MacBinary
| default
|
|
id metadata |
---|
key | value |
---|
macFileType | [TEXT] |
macFileCreator | [CWIE] |
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 00 0d 44 72 61 77 47 72 | 61 74 69 6e 67 2e 63 00 |..DrawGr|ating.c.|
|00000010| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000020| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000030| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000040| 00 54 45 58 54 43 57 49 | 45 01 00 00 00 00 00 00 |.TEXTCWI|E.......|
|00000050| 00 00 00 00 00 13 cb 00 | 00 01 9a ac 9f 27 f4 ac |........|.....'..|
|00000060| 9f 27 f4 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |.'......|........|
|00000070| 00 00 00 00 00 00 00 00 | 00 00 81 81 4b 15 00 00 |........|....K...|
|00000080| 2f 2a 0d 44 72 61 77 47 | 72 61 74 69 6e 67 2e 63 |/*.DrawG|rating.c|
|00000090| 0d 0d 51 75 69 63 6b 6c | 79 20 64 72 61 77 73 20 |..Quickl|y draws |
|000000a0| 61 20 67 72 61 74 69 6e | 67 20 28 63 6f 73 2c 20 |a gratin|g (cos, |
|000000b0| 73 69 6e 2c 20 73 71 75 | 61 72 65 2c 20 6f 72 20 |sin, squ|are, or |
|000000c0| 6d 69 73 73 69 6e 67 20 | 66 75 6e 64 61 6d 65 6e |missing |fundamen|
|000000d0| 74 61 6c 29 20 77 69 74 | 68 20 61 0d 67 61 75 73 |tal) wit|h a.gaus|
|000000e0| 73 69 61 6e 20 65 6e 76 | 65 6c 6f 70 65 20 69 6e |sian env|elope in|
|000000f0| 20 74 68 65 20 63 75 72 | 72 65 6e 74 20 70 6f 72 | the cur|rent por|
|00000100| 74 2c 20 62 6f 75 6e 64 | 65 64 20 62 79 20 74 68 |t, bound|ed by th|
|00000110| 65 20 73 75 70 70 6c 69 | 65 64 20 72 65 63 74 2e |e suppli|ed rect.|
|00000120| 20 54 68 65 20 72 6f 75 | 74 69 6e 65 0d 69 73 20 | The rou|tine.is |
|00000130| 61 63 63 75 72 61 74 65 | 20 61 6e 64 20 74 61 6b |accurate| and tak|
|00000140| 65 73 20 61 64 76 61 6e | 74 61 67 65 20 6f 66 20 |es advan|tage of |
|00000150| 65 76 65 6e 20 61 6e 64 | 20 6f 64 64 20 73 79 6d |even and| odd sym|
|00000160| 6d 65 74 72 69 65 73 20 | 66 6f 72 20 73 70 65 65 |metries |for spee|
|00000170| 64 2e 20 49 74 20 69 73 | 20 6e 6f 74 0d 65 6e 74 |d. It is| not.ent|
|00000180| 69 72 65 6c 79 20 67 65 | 6e 65 72 61 6c 2c 20 65 |irely ge|neral, e|
|00000190| 2e 67 2e 20 6f 72 69 65 | 6e 74 61 74 69 6f 6e 20 |.g. orie|ntation |
|000001a0| 69 73 20 72 65 73 74 72 | 69 63 74 65 64 20 74 6f |is restr|icted to|
|000001b0| 20 76 65 72 74 69 63 61 | 6c 20 61 6e 64 20 68 6f | vertica|l and ho|
|000001c0| 72 69 7a 6f 6e 74 61 6c | 2e 0d 0d 53 71 75 61 72 |rizontal|...Squar|
|000001d0| 65 77 61 76 65 73 20 68 | 61 76 65 20 61 6e 20 75 |ewaves h|ave an u|
|000001e0| 6e 64 65 66 69 6e 65 64 | 20 76 61 6c 75 65 20 61 |ndefined| value a|
|000001f0| 74 20 7a 65 72 6f 20 63 | 72 6f 73 73 69 6e 67 73 |t zero c|rossings|
|00000200| 2c 20 65 2e 67 2e 20 61 | 74 20 74 68 65 20 6f 72 |, e.g. a|t the or|
|00000210| 69 67 69 6e 2c 20 73 6f | 20 49 27 76 65 0d 73 68 |igin, so| I've.sh|
|00000220| 69 66 74 65 64 20 61 6c | 6c 20 74 68 65 20 66 75 |ifted al|l the fu|
|00000230| 6e 63 74 69 6f 6e 73 20 | 62 79 20 61 20 68 61 6c |nctions |by a hal|
|00000240| 66 20 70 69 78 65 6c 20 | 75 70 20 61 6e 64 20 74 |f pixel |up and t|
|00000250| 6f 20 74 68 65 20 6c 65 | 66 74 2e 0d 0d 57 41 52 |o the le|ft...WAR|
|00000260| 4e 49 4e 47 3a 20 54 6f | 20 63 6f 6d 70 69 6c 65 |NING: To| compile|
|00000270| 20 74 68 69 73 20 72 6f | 75 74 69 6e 65 20 79 6f | this ro|utine yo|
|00000280| 75 27 6c 6c 20 6e 65 65 | 64 20 74 68 65 20 68 65 |u'll nee|d the he|
|00000290| 61 64 65 72 20 66 69 6c | 65 73 20 6e 72 2e 68 20 |ader fil|es nr.h |
|000002a0| 61 6e 64 20 6e 72 75 74 | 69 6c 2e 68 2c 0d 77 68 |and nrut|il.h,.wh|
|000002b0| 69 63 68 20 61 72 65 20 | 70 61 72 74 20 6f 66 20 |ich are |part of |
|000002c0| 74 68 65 20 4e 75 6d 65 | 72 69 63 61 6c 20 52 65 |the Nume|rical Re|
|000002d0| 63 69 70 65 73 20 69 6e | 20 43 2c 20 73 6f 6c 64 |cipes in| C, sold|
|000002e0| 20 62 79 20 43 61 6d 62 | 72 69 64 67 65 20 55 6e | by Camb|ridge Un|
|000002f0| 69 76 65 72 73 69 74 79 | 20 50 72 65 73 73 0d 66 |iversity| Press.f|
|00000300| 6f 72 20 61 62 6f 75 74 | 20 24 31 30 30 2e 20 28 |or about| $100. (|
|00000310| 53 65 65 20 41 64 76 69 | 63 65 20 64 6f 63 75 6d |See Advi|ce docum|
|00000320| 65 6e 74 2e 29 20 46 75 | 72 74 68 65 72 6d 6f 72 |ent.) Fu|rthermor|
|00000330| 65 2c 20 77 69 74 68 69 | 6e 20 6e 72 2e 68 2c 20 |e, withi|n nr.h, |
|00000340| 79 6f 75 20 73 68 6f 75 | 6c 64 20 6d 61 6b 65 0d |you shou|ld make.|
|00000350| 73 75 72 65 20 74 68 61 | 74 20 41 4e 53 49 20 70 |sure tha|t ANSI p|
|00000360| 72 6f 74 6f 74 79 70 65 | 73 20 61 72 65 20 65 6e |rototype|s are en|
|00000370| 61 62 6c 65 64 2c 20 73 | 69 6e 63 65 20 74 68 65 |abled, s|ince the|
|00000380| 79 20 70 72 6f 76 69 64 | 65 20 74 68 65 20 73 74 |y provid|e the st|
|00000390| 72 69 63 74 65 73 74 20 | 61 6e 64 0d 73 61 66 65 |rictest |and.safe|
|000003a0| 73 74 20 70 72 6f 74 6f | 74 79 70 65 20 69 6e 66 |st proto|type inf|
|000003b0| 6f 72 6d 61 74 69 6f 6e | 2e 20 53 69 6d 69 6c 61 |ormation|. Simila|
|000003c0| 72 6c 79 2c 20 73 65 74 | 20 79 6f 75 72 20 63 6f |rly, set| your co|
|000003d0| 6d 70 69 6c 65 72 20 74 | 6f 20 52 45 51 55 49 52 |mpiler t|o REQUIR|
|000003e0| 45 20 70 72 6f 74 6f 74 | 79 70 65 73 2e 0d 54 68 |E protot|ypes..Th|
|000003f0| 65 20 46 4c 4f 41 54 20 | 74 79 70 65 20 69 73 20 |e FLOAT |type is |
|00000400| 6d 79 20 6d 6f 64 69 66 | 69 63 61 74 69 6f 6e 20 |my modif|ication |
|00000410| 6f 66 20 74 68 65 20 4e | 75 6d 65 72 69 63 61 6c |of the N|umerical|
|00000420| 20 52 65 63 69 70 65 73 | 20 66 69 6c 65 73 2c 20 | Recipes| files, |
|00000430| 61 73 20 65 78 70 6c 61 | 69 6e 65 64 20 69 6e 0d |as expla|ined in.|
|00000440| 74 68 65 20 22 4e 75 6d | 65 72 69 63 61 6c 20 52 |the "Num|erical R|
|00000450| 65 63 69 70 65 73 2e 64 | 6f 63 22 20 66 69 6c 65 |ecipes.d|oc" file|
|00000460| 20 69 6e 20 4e 6f 74 65 | 73 2e 20 28 42 6f 73 63 | in Note|s. (Bosc|
|00000470| 6f 20 54 6a 61 6e 20 72 | 65 70 6f 72 74 73 20 74 |o Tjan r|eports t|
|00000480| 68 61 74 20 79 6f 75 20 | 6e 65 65 64 20 74 68 65 |hat you |need the|
|00000490| 20 0d 63 75 72 72 65 6e | 74 20 76 65 72 73 69 6f | .curren|t versio|
|000004a0| 6e 2c 20 32 2c 20 73 69 | 6e 63 65 20 76 65 72 73 |n, 2, si|nce vers|
|000004b0| 69 6f 6e 20 31 20 6f 6d | 69 74 73 20 74 68 65 20 |ion 1 om|its the |
|000004c0| 6c 76 65 63 74 6f 72 28 | 29 20 66 75 6e 63 74 69 |lvector(|) functi|
|000004d0| 6f 6e 2e 29 0d 0d 48 49 | 53 54 4f 52 59 3a 0d 31 |on.)..HI|STORY:.1|
|000004e0| 31 2f 32 2f 39 34 20 64 | 67 70 20 73 68 72 69 6e |1/2/94 d|gp shrin|
|000004f0| 6b 20 62 79 20 73 2d 3e | 6e 6f 69 73 65 43 68 65 |k by s->|noiseChe|
|00000500| 63 6b 53 69 7a 65 2c 20 | 73 69 6e 63 65 20 69 74 |ckSize, |since it|
|00000510| 20 77 69 6c 6c 20 6c 61 | 74 65 72 20 62 65 20 65 | will la|ter be e|
|00000520| 78 70 61 6e 64 65 64 20 | 62 79 20 74 68 61 74 20 |xpanded |by that |
|00000530| 61 6d 6f 75 6e 74 2e 0d | 33 2f 32 36 2f 39 35 20 |amount..|3/26/95 |
|00000540| 64 67 70 20 61 73 20 72 | 65 71 75 65 73 74 65 64 |dgp as r|equested|
|00000550| 20 62 79 20 4d 61 6e 6f | 6a 2c 20 74 68 65 72 65 | by Mano|j, there|
|00000560| 20 61 72 65 20 6e 6f 77 | 20 73 65 70 61 72 61 74 | are now| separat|
|00000570| 65 20 73 70 61 63 65 20 | 63 6f 6e 73 74 61 6e 74 |e space |constant|
|00000580| 73 20 61 6c 6f 6e 67 20 | 61 6e 64 20 61 63 72 6f |s along |and acro|
|00000590| 73 73 0d 09 09 09 62 61 | 72 73 2e 0d 36 2f 31 36 |ss....ba|rs..6/16|
|000005a0| 2f 39 35 20 64 67 70 20 | 72 65 70 6c 61 63 65 20 |/95 dgp |replace |
|000005b0| 22 6e 6f 69 73 65 43 68 | 65 63 6b 53 69 7a 65 22 |"noiseCh|eckSize"|
|000005c0| 20 62 79 20 22 73 69 67 | 6e 61 6c 43 68 65 63 6b | by "sig|nalCheck|
|000005d0| 53 69 7a 65 22 2e 0d 36 | 2f 31 37 2f 39 35 20 64 |Size"..6|/17/95 d|
|000005e0| 67 70 20 63 68 61 6e 67 | 65 64 20 22 73 69 67 6e |gp chang|ed "sign|
|000005f0| 61 6c 42 6f 75 6e 64 73 | 22 20 69 6e 20 66 69 72 |alBounds|" in fir|
|00000600| 73 74 20 6c 69 6e 65 20 | 74 6f 20 22 73 74 69 6d |st line |to "stim|
|00000610| 75 6c 75 73 42 6f 75 6e | 64 73 22 0d 36 2f 31 37 |ulusBoun|ds".6/17|
|00000620| 2f 39 35 20 64 67 70 20 | 65 6c 69 6d 69 6e 61 74 |/95 dgp |eliminat|
|00000630| 65 64 20 61 6c 6c 20 72 | 65 66 65 72 65 6e 63 65 |ed all r|eference|
|00000640| 20 74 6f 20 73 2d 3e 73 | 69 67 6e 61 6c 43 6f 6e | to s->s|ignalCon|
|00000650| 74 72 61 73 74 2c 20 73 | 69 6e 63 65 20 74 68 61 |trast, s|ince tha|
|00000660| 74 20 61 70 70 6c 69 65 | 73 20 74 6f 20 74 68 65 |t applie|s to the|
|00000670| 20 0d 09 09 09 65 6e 74 | 69 72 65 20 73 65 71 75 | ....ent|ire sequ|
|00000680| 65 6e 63 65 20 6f 66 20 | 69 6d 61 67 65 73 2e 0d |ence of |images..|
|00000690| 2a 2f 0d 2f 2f 23 69 6e | 63 6c 75 64 65 20 22 54 |*/.//#in|clude "T|
|000006a0| 65 78 74 49 6e 4e 6f 69 | 73 65 2e 68 22 0d 23 69 |extInNoi|se.h".#i|
|000006b0| 6e 63 6c 75 64 65 20 22 | 6e 72 2e 68 22 09 09 09 |nclude "|nr.h"...|
|000006c0| 2f 2a 20 70 72 6f 74 6f | 74 79 70 65 73 20 6f 66 |/* proto|types of|
|000006d0| 20 4e 75 6d 65 72 69 63 | 61 6c 20 52 65 63 69 70 | Numeric|al Recip|
|000006e0| 65 73 20 61 6e 64 20 64 | 65 66 69 6e 69 74 69 6f |es and d|efinitio|
|000006f0| 6e 20 6f 66 20 46 4c 4f | 41 54 20 2a 2f 0d 23 69 |n of FLO|AT */.#i|
|00000700| 6e 63 6c 75 64 65 20 22 | 6e 72 75 74 69 6c 2e 68 |nclude "|nrutil.h|
|00000710| 22 0d 65 6e 75 6d 7b 6b | 43 6f 73 69 6e 65 77 61 |".enum{k|Cosinewa|
|00000720| 76 65 3d 30 2c 6b 53 69 | 6e 65 77 61 76 65 2c 6b |ve=0,kSi|newave,k|
|00000730| 53 71 75 61 72 65 77 61 | 76 65 2c 6b 4d 69 73 73 |Squarewa|ve,kMiss|
|00000740| 69 6e 67 46 75 6e 64 61 | 6d 65 6e 74 61 6c 7d 3b |ingFunda|mental};|
|00000750| 2f 2f 20 67 72 61 74 69 | 6e 67 54 79 70 65 0d 74 |// grati|ngType.t|
|00000760| 79 70 65 64 65 66 20 73 | 74 72 75 63 74 7b 0d 09 |ypedef s|truct{..|
|00000770| 46 4c 4f 41 54 20 64 65 | 67 72 65 65 73 50 65 72 |FLOAT de|greesPer|
|00000780| 50 69 78 65 6c 3b 0d 09 | 46 4c 4f 41 54 20 73 70 |Pixel;..|FLOAT sp|
|00000790| 61 74 69 61 6c 46 72 65 | 71 75 65 6e 63 79 2c 73 |atialFre|quency,s|
|000007a0| 70 61 63 65 43 6f 6e 73 | 74 61 6e 74 41 6c 6f 6e |paceCons|tantAlon|
|000007b0| 67 42 61 72 73 2c 73 70 | 61 63 65 43 6f 6e 73 74 |gBars,sp|aceConst|
|000007c0| 61 6e 74 41 63 72 6f 73 | 73 42 61 72 73 3b 0d 09 |antAcros|sBars;..|
|000007d0| 52 65 63 74 20 62 6f 75 | 6e 64 73 3b 0d 09 50 6f |Rect bou|nds;..Po|
|000007e0| 69 6e 74 20 6f 72 69 67 | 69 6e 3b 09 2f 2f 20 6f |int orig|in;.// o|
|000007f0| 72 69 67 69 6e 20 6f 66 | 20 74 68 65 20 66 75 6e |rigin of| the fun|
|00000800| 63 74 69 6f 6e 73 20 77 | 69 6c 6c 20 62 65 20 68 |ctions w|ill be h|
|00000810| 61 6c 66 20 61 20 70 69 | 78 65 6c 20 75 70 20 61 |alf a pi|xel up a|
|00000820| 6e 64 20 74 6f 20 74 68 | 65 20 6c 65 66 74 20 6f |nd to th|e left o|
|00000830| 66 20 74 68 69 73 2e 0d | 09 69 6e 74 20 67 72 61 |f this..|.int gra|
|00000840| 74 69 6e 67 54 79 70 65 | 3b 0d 09 69 6e 74 20 63 |tingType|;..int c|
|00000850| 68 65 63 6b 53 69 7a 65 | 3b 0d 09 42 6f 6f 6c 65 |heckSize|;..Boole|
|00000860| 61 6e 20 76 65 72 74 69 | 63 61 6c 3b 0d 09 69 6e |an verti|cal;..in|
|00000870| 74 20 65 41 6d 70 6c 69 | 74 75 64 65 2c 65 4f 66 |t eAmpli|tude,eOf|
|00000880| 66 73 65 74 3b 0d 7d 47 | 72 61 74 69 6e 67 53 70 |fset;.}G|ratingSp|
|00000890| 65 63 3b 0d 76 6f 69 64 | 20 44 72 61 77 47 72 61 |ec;.void| DrawGra|
|000008a0| 74 69 6e 67 28 47 72 61 | 74 69 6e 67 53 70 65 63 |ting(Gra|tingSpec|
|000008b0| 20 2a 67 29 3b 0d 0d 23 | 75 6e 64 65 66 20 4d 41 | *g);..#|undef MA|
|000008c0| 58 0d 23 75 6e 64 65 66 | 20 4d 49 4e 0d 23 64 65 |X.#undef| MIN.#de|
|000008d0| 66 69 6e 65 20 4d 41 58 | 28 61 2c 62 29 20 28 28 |fine MAX|(a,b) ((|
|000008e0| 61 29 20 3e 20 28 62 29 | 20 3f 20 28 61 29 20 3a |a) > (b)| ? (a) :|
|000008f0| 20 28 62 29 29 0d 23 64 | 65 66 69 6e 65 20 4d 49 | (b)).#d|efine MI|
|00000900| 4e 28 61 2c 62 29 20 28 | 28 61 29 20 3c 20 28 62 |N(a,b) (|(a) < (b|
|00000910| 29 20 3f 20 28 61 29 20 | 3a 20 28 62 29 29 0d 0d |) ? (a) |: (b))..|
|00000920| 76 6f 69 64 20 44 72 61 | 77 47 72 61 74 69 6e 67 |void Dra|wGrating|
|00000930| 28 47 72 61 74 69 6e 67 | 53 70 65 63 20 2a 67 29 |(Grating|Spec *g)|
|00000940| 0d 7b 0d 09 75 6e 73 69 | 67 6e 65 64 20 6c 6f 6e |.{..unsi|gned lon|
|00000950| 67 20 2a 67 72 61 74 69 | 6e 67 50 69 78 3b 0d 09 |g *grati|ngPix;..|
|00000960| 46 4c 4f 41 54 20 2a 66 | 58 2c 2a 66 58 45 6e 76 |FLOAT *f|X,*fXEnv|
|00000970| 65 6c 6f 70 65 2c 2a 66 | 59 2c 2a 66 54 65 6d 70 |elope,*f|Y,*fTemp|
|00000980| 2c 77 2c 65 31 2c 62 2c | 64 63 2c 61 3b 0d 09 69 |,w,e1,b,|dc,a;..i|
|00000990| 6e 74 20 69 4d 61 78 2c | 77 69 64 74 68 2c 66 58 |nt iMax,|width,fX|
|000009a0| 53 79 6d 6d 65 74 72 79 | 3d 30 2c 66 59 53 79 6d |Symmetry|=0,fYSym|
|000009b0| 6d 65 74 72 79 3d 30 3b | 0d 09 65 6e 75 6d 7b 6b |metry=0;|..enum{k|
|000009c0| 45 76 65 6e 3d 31 2c 6b | 4f 64 64 7d 3b 0d 09 52 |Even=1,k|Odd};..R|
|000009d0| 65 63 74 20 72 3b 0d 09 | 69 6e 74 20 69 2c 6a 3b |ect r;..|int i,j;|
|000009e0| 0d 09 69 6e 74 20 6c 65 | 66 74 45 64 67 65 2c 76 |..int le|ftEdge,v|
|000009f0| 65 72 74 69 63 61 6c 4f | 72 69 67 69 6e 3b 0d 0d |erticalO|rigin;..|
|00000a00| 09 72 3d 67 2d 3e 62 6f | 75 6e 64 73 3b 0d 09 4f |.r=g->bo|unds;..O|
|00000a10| 66 66 73 65 74 52 65 63 | 74 28 26 72 2c 2d 67 2d |ffsetRec|t(&r,-g-|
|00000a20| 3e 6f 72 69 67 69 6e 2e | 68 2c 2d 67 2d 3e 6f 72 |>origin.|h,-g->or|
|00000a30| 69 67 69 6e 2e 76 29 3b | 0d 09 53 68 72 69 6e 6b |igin.v);|..Shrink|
|00000a40| 52 65 63 74 28 26 72 2c | 67 2d 3e 63 68 65 63 6b |Rect(&r,|g->check|
|00000a50| 53 69 7a 65 2c 67 2d 3e | 63 68 65 63 6b 53 69 7a |Size,g->|checkSiz|
|00000a60| 65 29 3b 09 2f 2f 20 53 | 68 72 69 6e 6b 0d 09 69 |e);.// S|hrink..i|
|00000a70| 4d 61 78 3d 4d 41 58 28 | 72 2e 72 69 67 68 74 2c |Max=MAX(|r.right,|
|00000a80| 2d 72 2e 6c 65 66 74 29 | 2d 31 3b 0d 09 69 4d 61 |-r.left)|-1;..iMa|
|00000a90| 78 3d 4d 41 58 28 69 4d | 61 78 2c 4d 41 58 28 72 |x=MAX(iM|ax,MAX(r|
|00000aa0| 2e 62 6f 74 74 6f 6d 2c | 2d 72 2e 74 6f 70 29 2d |.bottom,|-r.top)-|
|00000ab0| 31 29 3b 0d 09 66 58 3d | 76 65 63 74 6f 72 28 2d |1);..fX=|vector(-|
|00000ac0| 69 4d 61 78 2d 31 2c 69 | 4d 61 78 29 3b 0d 09 66 |iMax-1,i|Max);..f|
|00000ad0| 58 45 6e 76 65 6c 6f 70 | 65 3d 76 65 63 74 6f 72 |XEnvelop|e=vector|
|00000ae0| 28 2d 69 4d 61 78 2d 31 | 2c 69 4d 61 78 29 3b 0d |(-iMax-1|,iMax);.|
|00000af0| 09 66 59 3d 76 65 63 74 | 6f 72 28 2d 69 4d 61 78 |.fY=vect|or(-iMax|
|00000b00| 2d 31 2c 69 4d 61 78 29 | 3b 0d 09 77 69 64 74 68 |-1,iMax)|;..width|
|00000b10| 3d 72 2e 72 69 67 68 74 | 2d 72 2e 6c 65 66 74 3b |=r.right|-r.left;|
|00000b20| 0d 09 62 3d 31 2f 28 67 | 2d 3e 73 70 61 63 65 43 |..b=1/(g|->spaceC|
|00000b30| 6f 6e 73 74 61 6e 74 41 | 6c 6f 6e 67 42 61 72 73 |onstantA|longBars|
|00000b40| 2f 67 2d 3e 64 65 67 72 | 65 65 73 50 65 72 50 69 |/g->degr|eesPerPi|
|00000b50| 78 65 6c 29 3b 0d 09 62 | 2a 3d 67 2d 3e 63 68 65 |xel);..b|*=g->che|
|00000b60| 63 6b 53 69 7a 65 3b 09 | 2f 2f 20 53 68 72 69 6e |ckSize;.|// Shrin|
|00000b70| 6b 0d 09 66 59 53 79 6d | 6d 65 74 72 79 3d 6b 45 |k..fYSym|metry=kE|
|00000b80| 76 65 6e 3b 0d 09 66 6f | 72 28 69 3d 30 3b 69 3c |ven;..fo|r(i=0;i<|
|00000b90| 3d 69 4d 61 78 3b 69 2b | 2b 29 7b 0d 09 09 61 3d |=iMax;i+|+){...a=|
|00000ba0| 28 69 2b 30 2e 35 29 2a | 62 3b 0d 09 09 66 59 5b |(i+0.5)*|b;...fY[|
|00000bb0| 2d 69 2d 31 5d 3d 66 59 | 5b 69 5d 3d 65 78 70 28 |-i-1]=fY|[i]=exp(|
|00000bc0| 2d 61 2a 61 29 3b 0d 09 | 7d 0d 09 69 66 28 67 2d |-a*a);..|}..if(g-|
|00000bd0| 3e 73 70 61 63 65 43 6f | 6e 73 74 61 6e 74 41 6c |>spaceCo|nstantAl|
|00000be0| 6f 6e 67 42 61 72 73 21 | 3d 67 2d 3e 73 70 61 63 |ongBars!|=g->spac|
|00000bf0| 65 43 6f 6e 73 74 61 6e | 74 41 63 72 6f 73 73 42 |eConstan|tAcrossB|
|00000c00| 61 72 73 29 7b 0d 09 09 | 62 3d 31 2f 28 67 2d 3e |ars){...|b=1/(g->|
|00000c10| 73 70 61 63 65 43 6f 6e | 73 74 61 6e 74 41 63 72 |spaceCon|stantAcr|
|00000c20| 6f 73 73 42 61 72 73 2f | 67 2d 3e 64 65 67 72 65 |ossBars/|g->degre|
|00000c30| 65 73 50 65 72 50 69 78 | 65 6c 29 3b 0d 09 09 62 |esPerPix|el);...b|
|00000c40| 2a 3d 67 2d 3e 63 68 65 | 63 6b 53 69 7a 65 3b 09 |*=g->che|ckSize;.|
|00000c50| 2f 2f 20 53 68 72 69 6e | 6b 0d 09 09 66 6f 72 28 |// Shrin|k...for(|
|00000c60| 69 3d 30 3b 69 3c 3d 69 | 4d 61 78 3b 69 2b 2b 29 |i=0;i<=i|Max;i++)|
|00000c70| 7b 0d 09 09 09 61 3d 28 | 69 2b 30 2e 35 29 2a 62 |{....a=(|i+0.5)*b|
|00000c80| 3b 0d 09 09 09 66 58 45 | 6e 76 65 6c 6f 70 65 5b |;....fXE|nvelope[|
|00000c90| 2d 69 2d 31 5d 3d 66 58 | 45 6e 76 65 6c 6f 70 65 |-i-1]=fX|Envelope|
|00000ca0| 5b 69 5d 3d 65 78 70 28 | 2d 61 2a 61 29 3b 0d 09 |[i]=exp(|-a*a);..|
|00000cb0| 09 7d 0d 09 7d 65 6c 73 | 65 7b 0d 09 09 66 6f 72 |.}..}els|e{...for|
|00000cc0| 28 69 3d 30 3b 69 3c 3d | 69 4d 61 78 3b 69 2b 2b |(i=0;i<=|iMax;i++|
|00000cd0| 29 20 66 58 45 6e 76 65 | 6c 6f 70 65 5b 2d 69 2d |) fXEnve|lope[-i-|
|00000ce0| 31 5d 3d 66 58 45 6e 76 | 65 6c 6f 70 65 5b 69 5d |1]=fXEnv|elope[i]|
|00000cf0| 3d 66 59 5b 69 5d 3b 0d | 09 7d 09 09 0d 09 61 73 |=fY[i];.|.}....as|
|00000d00| 73 65 72 74 28 66 59 53 | 79 6d 6d 65 74 72 79 3d |sert(fYS|ymmetry=|
|00000d10| 3d 6b 45 76 65 6e 29 3b | 0d 09 77 3d 32 2a 50 49 |=kEven);|..w=2*PI|
|00000d20| 2a 67 2d 3e 73 70 61 74 | 69 61 6c 46 72 65 71 75 |*g->spat|ialFrequ|
|00000d30| 65 6e 63 79 2a 67 2d 3e | 64 65 67 72 65 65 73 50 |ency*g->|degreesP|
|00000d40| 65 72 50 69 78 65 6c 3b | 0d 09 77 2a 3d 67 2d 3e |erPixel;|..w*=g->|
|00000d50| 63 68 65 63 6b 53 69 7a | 65 3b 09 2f 2f 20 53 68 |checkSiz|e;.// Sh|
|00000d60| 72 69 6e 6b 0d 09 65 31 | 3d 67 2d 3e 65 41 6d 70 |rink..e1|=g->eAmp|
|00000d70| 6c 69 74 75 64 65 3b 0d | 09 73 77 69 74 63 68 28 |litude;.|.switch(|
|00000d80| 67 2d 3e 67 72 61 74 69 | 6e 67 54 79 70 65 29 7b |g->grati|ngType){|
|00000d90| 0d 09 63 61 73 65 20 6b | 43 6f 73 69 6e 65 77 61 |..case k|Cosinewa|
|00000da0| 76 65 3a 0d 09 09 66 58 | 53 79 6d 6d 65 74 72 79 |ve:...fX|Symmetry|
|00000db0| 3d 6b 45 76 65 6e 3b 0d | 09 09 66 6f 72 28 69 3d |=kEven;.|..for(i=|
|00000dc0| 30 3b 69 3c 3d 69 4d 61 | 78 3b 69 2b 2b 29 7b 0d |0;i<=iMa|x;i++){.|
|00000dd0| 09 09 09 66 58 5b 2d 69 | 2d 31 5d 3d 66 58 5b 69 |...fX[-i|-1]=fX[i|
|00000de0| 5d 3d 65 31 2a 66 58 45 | 6e 76 65 6c 6f 70 65 5b |]=e1*fXE|nvelope[|
|00000df0| 69 5d 2a 63 6f 73 28 28 | 69 2b 30 2e 35 29 2a 77 |i]*cos((|i+0.5)*w|
|00000e00| 29 3b 0d 09 09 7d 0d 09 | 09 62 72 65 61 6b 3b 0d |);...}..|.break;.|
|00000e10| 09 63 61 73 65 20 6b 53 | 69 6e 65 77 61 76 65 3a |.case kS|inewave:|
|00000e20| 0d 09 09 66 58 53 79 6d | 6d 65 74 72 79 3d 6b 4f |...fXSym|metry=kO|
|00000e30| 64 64 3b 0d 09 09 66 6f | 72 28 69 3d 30 3b 69 3c |dd;...fo|r(i=0;i<|
|00000e40| 3d 69 4d 61 78 3b 69 2b | 2b 29 7b 0d 09 09 09 66 |=iMax;i+|+){....f|
|00000e50| 58 5b 69 5d 3d 65 31 2a | 66 58 45 6e 76 65 6c 6f |X[i]=e1*|fXEnvelo|
|00000e60| 70 65 5b 69 5d 2a 73 69 | 6e 28 28 69 2b 30 2e 35 |pe[i]*si|n((i+0.5|
|00000e70| 29 2a 77 29 3b 0d 09 09 | 09 66 58 5b 2d 69 2d 31 |)*w);...|.fX[-i-1|
|00000e80| 5d 3d 2d 66 58 5b 69 5d | 3b 0d 09 09 7d 0d 09 09 |]=-fX[i]|;...}...|
|00000e90| 62 72 65 61 6b 3b 0d 09 | 63 61 73 65 20 6b 53 71 |break;..|case kSq|
|00000ea0| 75 61 72 65 77 61 76 65 | 3a 0d 09 09 66 58 53 79 |uarewave|:...fXSy|
|00000eb0| 6d 6d 65 74 72 79 3d 6b | 4f 64 64 3b 0d 09 09 66 |mmetry=k|Odd;...f|
|00000ec0| 6f 72 28 69 3d 30 3b 69 | 3c 3d 69 4d 61 78 3b 69 |or(i=0;i|<=iMax;i|
|00000ed0| 2b 2b 29 7b 0d 09 09 09 | 69 66 28 73 69 6e 28 28 |++){....|if(sin((|
|00000ee0| 69 2b 30 2e 35 29 2a 77 | 29 3e 3d 30 29 66 58 5b |i+0.5)*w|)>=0)fX[|
|00000ef0| 69 5d 3d 31 3b 0d 09 09 | 09 65 6c 73 65 20 66 58 |i]=1;...|.else fX|
|00000f00| 5b 69 5d 3d 2d 31 3b 0d | 09 09 09 66 58 5b 69 5d |[i]=-1;.|...fX[i]|
|00000f10| 2a 3d 65 31 2a 66 58 45 | 6e 76 65 6c 6f 70 65 5b |*=e1*fXE|nvelope[|
|00000f20| 69 5d 3b 0d 09 09 09 66 | 58 5b 2d 69 2d 31 5d 3d |i];....f|X[-i-1]=|
|00000f30| 2d 66 58 5b 69 5d 3b 0d | 09 09 7d 0d 09 09 62 72 |-fX[i];.|..}...br|
|00000f40| 65 61 6b 3b 0d 09 63 61 | 73 65 20 6b 4d 69 73 73 |eak;..ca|se kMiss|
|00000f50| 69 6e 67 46 75 6e 64 61 | 6d 65 6e 74 61 6c 3a 0d |ingFunda|mental:.|
|00000f60| 09 09 66 58 53 79 6d 6d | 65 74 72 79 3d 6b 4f 64 |..fXSymm|etry=kOd|
|00000f70| 64 3b 0d 09 09 66 6f 72 | 28 69 3d 30 3b 69 3c 3d |d;...for|(i=0;i<=|
|00000f80| 69 4d 61 78 3b 69 2b 2b | 29 7b 0d 09 09 09 61 3d |iMax;i++|){....a=|
|00000f90| 73 69 6e 28 28 69 2b 30 | 2e 35 29 2a 77 29 3b 0d |sin((i+0|.5)*w);.|
|00000fa0| 09 09 09 66 58 5b 69 5d | 3d 28 61 3e 30 29 3f 31 |...fX[i]|=(a>0)?1|
|00000fb0| 3a 2d 31 3b 0d 09 09 09 | 66 58 5b 69 5d 2d 3d 28 |:-1;....|fX[i]-=(|
|00000fc0| 34 2f 50 49 29 2a 61 3b | 0d 09 09 09 66 58 5b 69 |4/PI)*a;|....fX[i|
|00000fd0| 5d 2a 3d 65 31 2a 66 58 | 45 6e 76 65 6c 6f 70 65 |]*=e1*fX|Envelope|
|00000fe0| 5b 69 5d 3b 0d 09 09 09 | 66 58 5b 2d 69 2d 31 5d |[i];....|fX[-i-1]|
|00000ff0| 3d 2d 66 58 5b 69 5d 3b | 0d 09 09 7d 0d 09 09 62 |=-fX[i];|...}...b|
|00001000| 72 65 61 6b 3b 0d 09 7d | 0d 09 69 66 28 21 67 2d |reak;..}|..if(!g-|
|00001010| 3e 76 65 72 74 69 63 61 | 6c 29 7b 0d 09 09 66 54 |>vertica|l){...fT|
|00001020| 65 6d 70 3d 66 58 3b 0d | 09 09 69 3d 66 58 53 79 |emp=fX;.|..i=fXSy|
|00001030| 6d 6d 65 74 72 79 3b 0d | 09 09 66 58 3d 66 59 3b |mmetry;.|..fX=fY;|
|00001040| 0d 09 09 66 58 53 79 6d | 6d 65 74 72 79 3d 66 59 |...fXSym|metry=fY|
|00001050| 53 79 6d 6d 65 74 72 79 | 3b 0d 09 09 66 59 3d 66 |Symmetry|;...fY=f|
|00001060| 54 65 6d 70 3b 0d 09 09 | 66 59 53 79 6d 6d 65 74 |Temp;...|fYSymmet|
|00001070| 72 79 3d 69 3b 0d 09 7d | 0d 09 67 72 61 74 69 6e |ry=i;..}|..gratin|
|00001080| 67 50 69 78 3d 6c 76 65 | 63 74 6f 72 28 2d 69 4d |gPix=lve|ctor(-iM|
|00001090| 61 78 2d 31 2c 69 4d 61 | 78 29 3b 0d 09 64 63 3d |ax-1,iMa|x);..dc=|
|000010a0| 67 2d 3e 65 4f 66 66 73 | 65 74 2b 30 2e 35 3b 0d |g->eOffs|et+0.5;.|
|000010b0| 09 6c 65 66 74 45 64 67 | 65 3d 72 2e 6c 65 66 74 |.leftEdg|e=r.left|
|000010c0| 2b 67 2d 3e 6f 72 69 67 | 69 6e 2e 68 2f 67 2d 3e |+g->orig|in.h/g->|
|000010d0| 63 68 65 63 6b 53 69 7a | 65 3b 0d 09 76 65 72 74 |checkSiz|e;..vert|
|000010e0| 69 63 61 6c 4f 72 69 67 | 69 6e 3d 67 2d 3e 6f 72 |icalOrig|in=g->or|
|000010f0| 69 67 69 6e 2e 76 2f 67 | 2d 3e 63 68 65 63 6b 53 |igin.v/g|->checkS|
|00001100| 69 7a 65 3b 0d 09 66 6f | 72 28 6a 3d 69 4d 61 78 |ize;..fo|r(j=iMax|
|00001110| 3b 6a 3e 3d 30 3b 6a 2d | 2d 29 7b 0d 09 09 69 66 |;j>=0;j-|-){...if|
|00001120| 28 6a 3e 3d 72 2e 62 6f | 74 74 6f 6d 20 26 26 20 |(j>=r.bo|ttom && |
|00001130| 2d 6a 2d 31 3c 72 2e 74 | 6f 70 29 63 6f 6e 74 69 |-j-1<r.t|op)conti|
|00001140| 6e 75 65 3b 0d 09 09 73 | 77 69 74 63 68 28 66 58 |nue;...s|witch(fX|
|00001150| 53 79 6d 6d 65 74 72 79 | 29 7b 0d 09 09 63 61 73 |Symmetry|){...cas|
|00001160| 65 20 6b 45 76 65 6e 3a | 0d 09 09 09 66 6f 72 28 |e kEven:|....for(|
|00001170| 69 3d 69 4d 61 78 3b 69 | 3e 3d 30 3b 69 2d 2d 29 |i=iMax;i|>=0;i--)|
|00001180| 67 72 61 74 69 6e 67 50 | 69 78 5b 2d 69 2d 31 5d |gratingP|ix[-i-1]|
|00001190| 3d 67 72 61 74 69 6e 67 | 50 69 78 5b 69 5d 3d 64 |=grating|Pix[i]=d|
|000011a0| 63 2b 66 59 5b 6a 5d 2a | 66 58 5b 69 5d 3b 0d 09 |c+fY[j]*|fX[i];..|
|000011b0| 09 09 62 72 65 61 6b 3b | 0d 09 09 63 61 73 65 20 |..break;|...case |
|000011c0| 6b 4f 64 64 3a 0d 09 09 | 09 66 6f 72 28 69 3d 69 |kOdd:...|.for(i=i|
|000011d0| 4d 61 78 3b 69 3e 3d 30 | 3b 69 2d 2d 29 7b 0d 09 |Max;i>=0|;i--){..|
|000011e0| 09 09 09 61 3d 66 59 5b | 6a 5d 2a 66 58 5b 69 5d |...a=fY[|j]*fX[i]|
|000011f0| 3b 0d 09 09 09 09 67 72 | 61 74 69 6e 67 50 69 78 |;.....gr|atingPix|
|00001200| 5b 69 5d 3d 64 63 2b 61 | 3b 0d 09 09 09 09 67 72 |[i]=dc+a|;.....gr|
|00001210| 61 74 69 6e 67 50 69 78 | 5b 2d 69 2d 31 5d 3d 64 |atingPix|[-i-1]=d|
|00001220| 63 2d 61 3b 0d 09 09 09 | 7d 0d 09 09 09 62 72 65 |c-a;....|}....bre|
|00001230| 61 6b 3b 0d 09 09 64 65 | 66 61 75 6c 74 3a 0d 09 |ak;...de|fault:..|
|00001240| 09 09 61 73 73 65 72 74 | 28 30 29 3b 0d 09 09 7d |..assert|(0);...}|
|00001250| 0d 09 09 69 66 28 6a 3c | 72 2e 62 6f 74 74 6f 6d |...if(j<|r.bottom|
|00001260| 29 53 65 74 50 69 78 65 | 6c 73 51 75 69 63 6b 6c |)SetPixe|lsQuickl|
|00001270| 79 28 6c 65 66 74 45 64 | 67 65 2c 6a 2b 76 65 72 |y(leftEd|ge,j+ver|
|00001280| 74 69 63 61 6c 4f 72 69 | 67 69 6e 2c 26 67 72 61 |ticalOri|gin,&gra|
|00001290| 74 69 6e 67 50 69 78 5b | 72 2e 6c 65 66 74 5d 2c |tingPix[|r.left],|
|000012a0| 77 69 64 74 68 29 3b 0d | 09 09 69 66 28 2d 6a 2d |width);.|..if(-j-|
|000012b0| 31 3e 3d 72 2e 74 6f 70 | 29 7b 0d 09 09 09 73 77 |1>=r.top|){....sw|
|000012c0| 69 74 63 68 28 66 59 53 | 79 6d 6d 65 74 72 79 29 |itch(fYS|ymmetry)|
|000012d0| 7b 0d 09 09 09 63 61 73 | 65 20 6b 45 76 65 6e 3a |{....cas|e kEven:|
|000012e0| 0d 09 09 09 09 62 72 65 | 61 6b 3b 0d 09 09 09 63 |.....bre|ak;....c|
|000012f0| 61 73 65 20 6b 4f 64 64 | 3a 0d 09 09 09 09 66 6f |ase kOdd|:.....fo|
|00001300| 72 28 69 3d 69 4d 61 78 | 3b 69 3e 3d 2d 69 4d 61 |r(i=iMax|;i>=-iMa|
|00001310| 78 2d 31 3b 69 2d 2d 29 | 67 72 61 74 69 6e 67 50 |x-1;i--)|gratingP|
|00001320| 69 78 5b 69 5d 3d 64 63 | 2d 28 67 72 61 74 69 6e |ix[i]=dc|-(gratin|
|00001330| 67 50 69 78 5b 69 5d 2d | 64 63 29 3b 0d 09 09 09 |gPix[i]-|dc);....|
|00001340| 09 62 72 65 61 6b 3b 0d | 09 09 09 64 65 66 61 75 |.break;.|...defau|
|00001350| 6c 74 3a 0d 09 09 09 09 | 61 73 73 65 72 74 28 30 |lt:.....|assert(0|
|00001360| 29 3b 0d 09 09 09 7d 0d | 09 09 09 53 65 74 50 69 |);....}.|...SetPi|
|00001370| 78 65 6c 73 51 75 69 63 | 6b 6c 79 28 6c 65 66 74 |xelsQuic|kly(left|
|00001380| 45 64 67 65 2c 2d 6a 2d | 31 2b 76 65 72 74 69 63 |Edge,-j-|1+vertic|
|00001390| 61 6c 4f 72 69 67 69 6e | 2c 26 67 72 61 74 69 6e |alOrigin|,&gratin|
|000013a0| 67 50 69 78 5b 72 2e 6c | 65 66 74 5d 2c 77 69 64 |gPix[r.l|eft],wid|
|000013b0| 74 68 29 3b 0d 09 09 7d | 0d 09 7d 0d 09 66 72 65 |th);...}|..}..fre|
|000013c0| 65 5f 6c 76 65 63 74 6f | 72 28 67 72 61 74 69 6e |e_lvecto|r(gratin|
|000013d0| 67 50 69 78 2c 2d 69 4d | 61 78 2d 31 2c 69 4d 61 |gPix,-iM|ax-1,iMa|
|000013e0| 78 29 3b 0d 09 66 72 65 | 65 5f 76 65 63 74 6f 72 |x);..fre|e_vector|
|000013f0| 28 66 58 2c 2d 69 4d 61 | 78 2d 31 2c 69 4d 61 78 |(fX,-iMa|x-1,iMax|
|00001400| 29 3b 0d 09 66 72 65 65 | 5f 76 65 63 74 6f 72 28 |);..free|_vector(|
|00001410| 66 58 45 6e 76 65 6c 6f | 70 65 2c 2d 69 4d 61 78 |fXEnvelo|pe,-iMax|
|00001420| 2d 31 2c 69 4d 61 78 29 | 3b 0d 09 66 72 65 65 5f |-1,iMax)|;..free_|
|00001430| 76 65 63 74 6f 72 28 66 | 59 2c 2d 69 4d 61 78 2d |vector(f|Y,-iMax-|
|00001440| 31 2c 69 4d 61 78 29 3b | 0d 7d 0d 00 00 00 00 00 |1,iMax);|.}......|
|00001450| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001460| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001470| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001480| 00 00 01 00 00 00 01 54 | 00 00 00 54 00 00 00 46 |.......T|...T...F|
|00001490| 00 00 00 6c 00 00 0f 77 | 00 00 0f 78 03 00 00 01 |...l...w|...x....|
|000014a0| 03 46 00 00 00 01 76 00 | 02 43 00 00 00 70 00 00 |.F....v.|.C...p..|
|000014b0| 0d 44 72 61 77 47 72 61 | 74 69 6e 67 2e 63 02 00 |.DrawGra|ting.c..|
|000014c0| 00 00 54 45 58 54 43 57 | 49 45 01 00 00 50 01 20 |..TEXTCW|IE...P. |
|000014d0| 00 00 54 45 58 54 43 57 | 49 45 01 00 00 50 01 20 |..TEXTCW|IE...P. |
|000014e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000014f0| 00 00 ac 1b c3 b0 00 00 | 13 cb 00 00 01 9a 00 00 |........|........|
|00001500| 00 08 65 00 00 01 4e 6c | 00 00 0f 7e 00 00 0f 7f |..e...Nl|...~....|
|00001510| 03 00 00 01 03 46 00 00 | 00 01 76 00 00 00 6e 00 |.....F..|..v...n.|
|00001520| 00 0f 80 01 00 00 4e 24 | 65 00 00 01 6b 6e 00 00 |......N$|e...kn..|
|00001530| 0f 81 01 00 00 00 67 65 | 00 00 01 6b 6e 00 00 0f |......ge|...kn...|
|00001540| 82 01 ff ff db 47 65 00 | 00 01 22 6e 00 00 0f 83 |.....Ge.|.."n....|
|00001550| 01 ff ff f8 1a 65 00 00 | 01 0f 6c 00 00 0f 84 00 |.....e..|..l.....|
|00001560| 00 0f 85 03 00 00 01 03 | 46 00 00 00 01 76 00 02 |........|F....v..|
|00001570| 4c 00 00 00 70 00 00 73 | 00 00 00 53 00 00 00 00 |L...p..s|...S....|
|00001580| 00 00 00 48 00 09 4d 6f | 6e 61 63 6f 00 00 00 00 |...H..Mo|naco....|
|00001590| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000015a0| 00 00 00 00 00 00 00 03 | 00 04 00 85 00 1d 02 38 |........|.......8|
|000015b0| 02 97 00 85 00 1d 02 38 | 02 97 ad d1 48 b1 00 00 |.......8|....H...|
|000015c0| 09 c4 00 00 09 c5 00 00 | 00 00 00 00 00 00 00 04 |........|........|
|000015d0| 00 01 00 01 00 00 01 00 | 00 00 01 54 00 00 00 54 |........|...T...T|
|000015e0| 00 00 00 46 01 a4 0e 14 | 41 5e 00 00 00 1c 00 46 |...F....|A^.....F|
|000015f0| 00 01 4d 50 53 52 00 00 | 00 12 4d 57 42 42 00 00 |..MPSR..|..MWBB..|
|00001600| 00 1e 03 ed ff ff 00 00 | 00 00 00 00 00 00 03 f0 |........|........|
|00001610| ff ff 00 00 00 4c 00 00 | 00 00 00 00 00 00 00 00 |.....L..|........|
|00001620| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001630| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001640| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001650| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001660| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001670| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
+--------+-------------------------+-------------------------+--------+--------+